OMB 412UNI # 4 DIGIT PROGRAMMABLE UNIVERSAL BARGRAPH DC VOLTMETER /AMMETER PROCESS MONITOR OHMMETER THERMOMETER FOR PT 100 / 500 / 1 000 THERMOMETER FOR NI 1 000 THERMOMETER FOR THERMOCOUPLES DISPLAYS FOR LIN. POTENTIOMETERS ### **SAFETY INSTRUCTIONS** Please, read the enclosed safety instructions carefully and observe them! These instruments should be safeguarded by isolated or common fuses (breakers)! For safety information the EN 61 010-1 + A2 standard must be observed. This instrument is not explosion-safe! ### **TECHNICAL DATA** Measuring instruments of the OMB 412 series conform to the European regulation 89/336/EWG and the Ordinance 168/1997 Coll. The instruments are up to the following European tandards: EN 55 022, class B EN 61000-4-2, -4, -5, -6, -8, -9, -10, -11 The instruments are applicable for unlimited use in agricultural and industrial areas. ### CONNECTION Supply of energy from the main line has to be isolated from the measuring leads. ### ORBIT MERRET, spol. s r.o. Vodnanska 675/30 198 00 Prague 9 Czech Republic Tel: +420 - 281 040 200 Fax: +420 - 281 040 299 e-mail: orbit@merret.cz www.orbit.merret.cz | 1. | Conte | | | | | | |-----|--|------------|--|-----|--|--| | 2. | Instrument description | | | | | | | 3. | Instrument connection. | | | | | | | 4. | Instrument setting | | | | | | | | | | in the instructions | | | | | | | | and the (-) sign | | | | | | | ol keys fu | | | | | | | Setting | g/permitt | ting items into "USER" menu | .11 | | | | 5. | Settin | g "LIGH | IT" menu. | 12 | | | | | 5.0 | Descript | tion "LIGHT" menu | 12 | | | | | | | input - Type "DC" | | | | | | | | input - Type "PM" | | | | | | | | input - Type "DU" | | | | | | | | input - Type "OHM" | | | | | | | | input - Type "RTD - Pt" | | | | | | | | input - Type "RTD - Cu" | | | | | | | | input - Type "RTD - Ni" | | | | | | | | input - Type "T/C" | | | | | | | Setting L | umits analog output | | | | | | | | of bargrahp | | | | | | | | n of programming menu "LIGHT"/"PROFI". | | | | | | | | ion of manufacture setting | | | | | | | | tion - input range (DU). | | | | | | | | n of instrument menu language version | | | | | | | Setting r | new access password | 40 | | | | | | Instrume | ent identification | 41 | | | | 6. | Settin | a "PRO | FI" menu | 40 | | | | | | | tion of "PROFI" menu | | | | | | 6.1 | | menu - INPUT | | | | | | 0.1 | 6.1.1 | Resetting internal values | 44 | | | | | | 6.1.2 | Setting measuring type, range, mode, rate | | | | | | | 6.1.3 | Setting the Real Time | | | | | | | 6.1.4 | External input function selection. | | | | | | | 6.1.5 | Optional accessory functions of the keys. | 52 | | | | | 6.2 | "PROFI" | menu - CHANNEL | | | | | | | 6.2.1 | Setting measuring parameters (projection, filters, decimal point, description) | 56 | | | | | | 6.2.2 | Setting mathematic functions | | | | | | | 6.2.3 | Selection of evaluation of min/max. value | 61 | | | | | 6.3 | "PROFI" | menu - OUTPUT | | | | | | | 6.3.1 | Setting data logging | 62 | | | | | | 6.3.2 | Setting Limits | | | | | | | 6.3.3 | Setting data output | | | | | | | 6.3.4 | Setting analog output | | | | | | | 6.3.5 | Selection of display projection. | | | | | | | 6.3.6 | Selection of bargraph projection | 70 | | | | | | | ' menu - SERVICE | | | | | | | 6.4.1 | Selection of programming menu "LIGHT"/"PROFI" | 74 | | | | | | 6.4.2 | Restoration manufacture setting | | | | | | | 6.4.3 | Calibration - input range (DU) | | | | | | | 6.4.4 | Selection of instrument menu language version. Setting new access password | | | | | | | 6.4.6 | Instrument identification | | | | | _ | | | | | | | | 7. | | | into "USER" menu | | | | | | | - | ration "USER" menu | | | | | 8. | | | easuring of the cold junction | | | | | 9. | Data protocol | | | | | | | 10. | Error statements | | | | | | | 11. | Technical data | | | | | | | 12. | 2. Instrument dimensions and instalation | | | | | | | 13. | | | | | | | | | Declaration of conformity | | | | | | ## 2.1 Description The OMB 412 model series are 24 LED, 3-colour panel programmable vertical bargraph designed for maximum efficiency and user comfort while maintaining their favourable price. Type OMB 412UNI is a multifunction bargraph with the option of configuration for 7 various input options, easily configurable in the instrument menu. By further options of input modules it is feasible to measure larger ranges of DC voltage and current or increase the number of inputs up to 4 (applies for PM). The instrument is based on an 8-bit microcontroller with a multichannel 24-bit sigma-delta converter, which secures high accuracy, stability and easy operation of the instrument. ### The OMB 412 is a multifunction instrument available in following types and ranges type UNI DC: 0...60/150/300/1200 mV PM: 0...5 mA/0...20 mA/4...20 mA/±2 V/±5 V/±10 V/±40 V **ΟΗΜ:** 0...100 Ω/0...1 kΩ/0...10 kΩ/0...100 kΩ **RTD-Pt:** Pt 100/Pt 500/Pt 1000 **RTD-Ni:** Ni 1 000/Ni 10 000 **T/C:** J/K/T/E/B/S/R/N DU: Linear potentiometer (min. 500 Ω) type UNI, option A DC: 0...1 A/0...5 A/±30 V/±120 V/±500 V type UNI, option B (expansion by 3 more inputs) PM: 3x 0...5 mA/0...20 mA/4...20 mA/±2 V/±5 V/±10 V/±40 V ### PROGRAMMABLE PROJECTION Selection: of type of input and measuring range Measuring range: adjustable as fixed or with automatic change Setting: manual, optional projection on the display may be set in the menu for both limit values of the input signal, e.g. input 0...20 mA > 0...850,0 Projection: 24-segment LED 3-color bargraph + 3-digit display -99...999 ### COMPENSATION of conduct: in the menu it is possible to perform compensation for 2-wire connection of conduct in probe: internal connection (conduct resistance in measuring head) of CJC (T/C): manual or automatic, in the menu it is possible to perform selection of the type of thermocouple and compensation of cold junctions, which is adjustable or automatic (temperature at the brackets) ### LINEARIZATION Linearization:* by linear interpolation in 50 points (solely via OM Link) DIGITAL FILTERS Exponen.average: from 2...100 measurements Rounding: setting the projection step for display ### **MATHEMATIC FUCTIONS** Min/max. value: registration of min./max. value reached during measurement Tare: designed to reset display upon non-zero input signal Peak value: the display shows only max. or min. value Mat. operations: polynome, 1/x, logarithm, exponential, power, root, sin x ### EXTERNAL CONTROL Lock: control keys blocking Hold: display/instrument blocking Tare: tare activation/resetting tare to zero Resetting MM: resetting min/max value Memory: data storage into instrument memory # 2.2 Operation The instrument is set and controlled by five control keys located on the front panel. All programmable settings of the instrument are performed in three adjusting modes: LIGHT Simple programming menu - contains solely items necessary for instrument setting and is protected by optional number code PROFI Complete programming menu - contains complete instrument menu and is protected by optional number code USER User programming menu - may contain arbitrary items selected from the programming menu (LIGHT/PROFI), which determine the right (see or change) - acces without password All programmable parameters are stored in the EEPROM memory (they hold even after the instrument is switched off). (OMLINK) Complete instrument operation and setting may be performed via OM Link communication interface, which is a standard equipment of all instruments. The operation program is freely accessible (www.orbit.merret.cz) and the only requirement is the purchase of OML cable to connect the instrument to PC. It is manufactured in version RS 232 and USB and is compatible with all ORBIT MERRET instruments. Another option for connection is with the aid of data output RS 232 or RS 485 (without the need of the OML cable). The program OM LINK in "Basic" version will enable you to connect one instrument with the option of visualization and archiving in PC. The OM Link "Standard" version has no limitation of the number of instruments connected. # 2.3 Options Excitation is suitable for supplying power to sensors and transmitters. It has a galvanic separation. Comparators are assigned to monitor one, two, three or four limit values with relay output. The user may select limits regime: LIMIT/DOSING/FROM-TO. The limits have adjustable hysteresis within the full range of the display as well as selectable delay of the switch-on in the range of 0...99,9 s. Reaching the preset limits is signalled by LED and simultaneously by the switch-on of the relevant relay. Data outputs are for their rate and accuracy suitable for transmission of the measured data for further projection or directly into the control systems. We offer an isolated RS232 and RS485 with the ASCII or DIN MessBus protocol. **Analog outputs** will find their place in applications where further evaluating or processing of measured data is required in external devices. We offer universal analog output with the option of selection of the type of output - voltage/current. The value of analog output corresponds with the displayed data and its type and range are selectable in Menu. Measured data record is an internal time control of data collection. It is suitable where it is necessary to register measured values. Two modes may be used. FAST is designed for fast storage (40 records/s) of all measured values up to 8 000 records. Second mode is RTC, where data record is governed by Real Time with data storage in a selected time segment and cycle. Up to 250 000 values may be stored in the instrument memory. Data transmis sion into PC via serial interface RS232/485 and OM Link. # INSTRUMENT CONNECTION The instrument supply leads should not be in proximity of the incoming low-potential signals. Contactors, motors with larger input power should not be in proximity of the
instrument. The leads into the instrument input (measured quantity) should be in sufficient distance from all power leads and appliances. Provided this cannot be secured it is necessary to use shielded leads with connection to ground (bracket E). The instruments are tested in compliance with standards for use in industrial area, yet we recommend to abide by the above mentioned principles. ### **MEASURING RANGES** | Туре | Input I | Input U | |--------|---|-----------------| | DC | 060/150/300/1 200 mV | | | PM | 05/20 mA/420 mA | ±2/±5/±10/±40 V | | ОНМ | $00,1/1/10/100 k\Omega/Auto$ | | | RTD-Pt | Pt 50/100/Pt 500/ Pt 1 000 | | | RTD-Cu | Cu 50/100 | | | RTD-Ni | Ni 1 000/10 000 | | | T/C | J/K/T/E/B/S/R/N | | | DU | Linear potentiometer (min. 500 Ω) | | ### **OPTION "A"** | Туре | Input I | Input U | |------|--|---------------------------------| | DC | ±0,1 A/±0,25 A/±0,5 A to GND (C)
±2 A/±5 A to GND (B) | ±100 V/±250 V/±500 V to GND (C) | ### OPTION "B" | Туре | Input 2, 3, 4/I | Input 2, 3, 4/U | |------|-----------------|-----------------| | PM | 05/20 mA/420 mA | ±2/±5/±10/±40 V | - · For expert users - · Complete instrument menu - · Access is password protected - Possibility to arrange items of the "User" menu - · Tree menu structure - For trained users - · Only items necessary for instrument setting - · Access is password protected - Possibility to arrange items of the "User" menu - · Linear menu structure - · For user operation - · Menu items are set by the user (Profi/Light) as per request - · Access is not password protected - · Optional menu structure either tree (PROFI) or linear (LIGHT) ## 4.1 Setting The instrument is set and controlled by five control keys located on the front panel. All programmable settings of the instrument are performed in three adjusting modes: LIGHT Simple programming menu - contains solely items necessary for instrument setting and is protected by optional number code PROFI Complete programming menu - contains complete instrument menu and is protected by optional number code USER User programming menu - may contain arbitrary items selected from the programming menu (LIGHT/PROFI), which determine the right (see or change) - acces without password All programmable parameters are stored in the EEPROM memory (they hold even after the instrument is switched off). Complete instrument operation and setting may be performed via OM Link communication interface, which is a standard equipment of all instruments. The operation program is freely accessible (www.orbit.merret.cz) and the only requirement is the purchase of OML cable to connect the instrument to PC. It is manufactured in version RS 232 and USB and is compatible with all ORBIT MERRET instruments. Another option for connection is with the aid of data output RS 232 or RS 485 (without the need of the OML cable). ### Scheme of processing the measured signal Setting and controlling the instrument is performed by means of 5 control keys located on the front panel. With the aid of these keys it is possible to browse through the operation menu and to select and set required values. ### Symbols used in the instructions DU OHM RTD T/C Indicates the setting for given type of instrument values preset from manufacture symbol indicates a flashing light (symbol) inverted triangle indicates the item that can be placed in USER menu after pressing the key the set value will not be stored after pressing the key the set value will be stored 30 continues on page 30 ### Setting the decimal point and the minus sign ### **DECIMAL POINT** Its selection in the menu, upon modification of the number to be adjusted it is performed by the control key **(** with transition beyond the highest decade, when the decimal point starts flashing. Positioning is performed by **(**/**(**). ### THE MINUS SIGN Setting the minus sign is performed by the key \bigcirc on higher decade. When editing the item substraction must be made from the current number (e.g.,: 013 > \bigcirc , on class 100 > .87) | Control keys fur | nctions | | | |---------------------|---------------------------------|--|------------------------------| | Key | Measurement | Menu | Setting numbers/selection | | • | access into USER menu | exit menu | quit editing | | 0 | programmable key function | back to previous level | move to higher decade | | | programmable key function | move to previous item | move down | | 0 | programmable key function | move to next item | move up | | Θ | programmable key function | confirm selection | confirm setting/selection | | 0+0 | | | numeric value is set to zero | | ⊕ + ⊖ | access into LIGHT/PROFI
menu | | | | © + © | direct access into PROFI menu | | | | ⊖+• | | configuration of an item for "USER" menu | | | ⊖ + ⊝ | | determine the sequence of items in "USER - LIGHT" menu | | # Setting items into "USER" menu in LIGHT or PROFI menu *4*£5 SHO. - no items permitted in USER menu from manufacture - on items marked by inverted triangle item will not be displayed in USER menu item will be displayed in USER menu with the option of setting item will be solely displayed in USER menu legend is flashing - current setting is displayed #### LIGHT Simple programming menu - contains only items necessary for instrument setting and is protected by optional number code - For capable users - · Only items necessary for instrument - · Access is password protected - · Possibility to arrange items of the "User" menu - · Linear menu structure ### Preset from manufacture Password "0" LIGHT Menu USER menu off Setting the items #### 6.0 Setting "PROFI" #### **PROFI** Complete programming menu - · contains complete instrument menu and is protected by optional number code - · designed for expert users - · preset from manufacture is menu LIGHT - Complete instrument menu - Access is password protected - · Possibility to arrange items of the "User" menu - Tree menu structure #### Switching over to "PROFI" menu - · temporary switch-over to PROFI menu, which is suitable to edit a few items - · after quitting PROFI menu the instrument automatically switches to LIGHT menu - access is password protected (if it was not set under item N. PA. =0) - access into LIGHT menu and transition to item "MNU" with subsequent selection of "PROFI" and confirmation - · after re-entering the menu the PROFI type is active - access is password protected (if it was not set under item N. PA. =0) ## 6.1 Setting "PROFI" - INPUT The primary instrument parameters are set in this menu Resetting internal ELr. values Selection of measuring CFG. range and parameters Setting date and time for rEC option with RTC Setting external inputs EHE. functions Assigning further FEY. functions to keys on the instrument ### 6.1.1 Resetting internal values - resetting memory with data measured in #### Selection of measuring rate 6.1.2a | <i>П.Р.</i> 5. | Selection of measuring rate | |----------------|-----------------------------| | 40.0 | 40,0 measurements/s | | 20.0 | 20,0 measurements/s | | 10.0 | 10,0 measurements/s | | 5.0 | 5,0 measurements/s | | 2.0 | 2,0 measurements/s | | 1.0 | 1,0 measurement/s | | 0.5 | 0,5 measurements/s | | 0.2 | 0,2 measurements/s | | 0.1 | 0,1 measurements/s | #### 6.1.2b Selection of "instrument" type | ESP. | Selection of "instrument" type | | |---|-----------------------------------|--| | - selection of particular type of "instrument" is bound to relevant dynamic items | | | | dΣ | DC voltmeter | | | PN | Process monitor | | | ОНП | Ohmmeter | | | PE | Thermometer for Pt xxx | | | 0.1 | Thermometer for Ni xxxx | | | ٤٤ | Thermometer pro thermocouples | | | dU | Display for linear potentiometers | | | ξυ | Thermometer for Cu xxx | | Upon delay exceeding 60 s the programming mode is automatically discontinued and the instrument itself restores the measuring mode ## 6.1.2c Selection of measuring range | T | | | | |---|---------------|-----------------------------------|----------------| | ⊕ ⊖ → | | DC | OHM ← | | | N <i>P</i> 5. | <i>60.</i> | DEF | | CHR. CFG. | ESP. | 150. | 1.0 | | סטצ רבנ | NOd. | 300. | 10.0 | | SEr. EHE. | [00] | 1.20 | 100. | | FEY. | E.C.J. | | RUŁ. | | | Rd. | DC-A | PM | | ,
, | E ER. | 100 | , 5 | | _ | | 250 | , D | | | D | 500 | , 4 DEF | | | | 0.10 | υ 2 | | | | 0.25 | 5 ں | | | | 0.50 | υ 10 | | | | 1.00 | ۵۷۵ | | | | 5.00 | | | Switching in the mode AUTO - "OHM" | | RTD-Pt | RTD-Cu | | 0.1 > 1 k | DĦ | E0.1 | 8-5 DEF | | 1 k > 10 k 1.010 k | | E0.5 | 8-1 | | 10 k > 100 k 10.10 k
100 > 10 k 9.900 k | | E 1.0 | 6-5 | | 10 k > 1 k 0.990 k | | UO. I | B- 1 | | 1 k > 0.1 k 0.099 k | | | | | When selection the "AUTO" range the | | r0.5 | | | When selecting the "AUTO" range, the items "MIN", "MAX", "P. TAR. A" will | | r0.5 | T/C | | | | r 0. t | ь | | items "MIN", "MAX", "P. TAR. A" will
not be displayed in the "CHAN. A" | Œ | | Ε | | items "MIN", "MAX", "P. TAR. A" will
not be displayed in the "CHAN. A" | O | r 0.1 | ε | | items "MIN", "MAX", "P. TAR. A" will
not be displayed in the "CHAN. A" | @ | r 0.1
RTD-Ni 5-1 | β Ε | | items "MIN", "MAX", "P. TAR. A" will
not be displayed in the "CHAN. A" | 6 | 70.1
RTD-Ni
5-1 | β Ε ΘΕ | | items "MIN", "MAX", "P. TAR. A" will
not be displayed in the "CHAN. A" | DEF | \$-1 \$10 \$10 \$6.10 | | | items "MIN", "MAX", "P. TAR. A" will
not be displayed in the "CHAN. A" | OEP
OEF | r0.1
RTD-Ni 5-1 6-1 510 | β Ε ΘΕ | | | noa | Selection of instrument measuring range | |-----------|--
--| | | | | | | Menu | Measuring range | | o | 60. | ±60 mV | | 20 | 150.
300. | ±150 mV
±300 mV | | | 1.20 | ±300 mV
±1,2 V | | | 100 | ±1,2 V
±100 V | | | 250 | ±250 V | | | 500 | ±500 V | | 4 | 0.10 | ±0,1 A | | ò | 0.25 | ±0,25 A | | - | 0.50 | ±0,5 A | | | 1.00 | ±1 A | | | 5.00 | ±5 A | | | Menu | Measuring range | | | i 5 | 05 mA | | | i O | 020 mA | | _ | i 4 | 420 mA | | Μ | u 2 | ±2 V | | | u 5 | ±5 V | | | u10 | ±10 V | | | u-40 | ±40 V | | | Menu | Measuring range | | | 0.1 | 0100 Ω | | WHO | 1.0k | 01 kΩ | | ō | 10.0 | 010 kΩ | | | 100. | 0100 kΩ | | | AUT. | Automatická změna rozsahu | | | Menu
E0.1 | Measuring range
Pt 100 (3 850 ppm/°C) | | | E0.1 | Pt 500 (3 850 ppm/°C) | | RTD-P | E1.0 | Pt 1000 (3 850 ppm/°C) | | 2 | U0.1 | Pt 100 (3 920 ppm/°C) | | | RO.5 | Pt 50 (3 910 ppm/°C) | | | RO.1 | Pt 100 (3 910 ppm/°C) | | | Menu | Measuring range | | RTD-Ni | 5-1
6-1 | Ni 1 000 (5 000 ppm/°C) | | - | | Ni 1 000 (6 180 ppm/°C) | | 2 | | Ni 10 000 (5 000 ppm/°C) | | 2 | 510
610 | Ni 10 000 (5 000 ppm/°C)
Ni 10 000 (6 180 ppm/°C) | | | 510
610
Menu | Ni 10 000 (6 180 ppm/°C)
Measuring range | | | 510
610
Menu
8-5 | Ni 10 000 (6 180 ppm/°C)
Measuring range
Cu 50 (4 280 ppm/°C) | | RTD-Cu RT | 510
610
Menu
8-5
8-1 | Ni 10 000 (6 180 ppm/°C) Measuring range Cu 50 (4 280 ppm/°C) Cu 1 00 (4 280 ppm/°C) | | | 510
610
Menu
8-5
8-1
6-5
6-1 | Ni 10 000 (6 180 ppm/°C)
Measuring range
Cu 50 (4 280 ppm/°C) | | | 510
610
Menu
8-5
8-1
6-5
6-1
Menu | Ni 10 000 (6 180 ppm/°C) Measuring range Cu 50 (4 280 ppm/°C) Cu 1 00 (4 280 ppm/°C) Cu 50 (4 260 ppm/°C) Cu 50 (4 260 ppm/°C) Type of thermocouple | | | 510
610
Menu
8-5
8-1
6-5
6-1
Menu
B | Ni 10 000 (6 180 ppm/°C) Messuring range Cu 50 (4 280 ppm/°C) Cu 1 00 (4 280 ppm/°C) Cu 50 (4 260 ppm/°C) Cu 100 (4 260 ppm/°C) Type of thermocouple T/C B | | | 510
610
Menu
8-5
8-1
6-5
6-1
Menu
B | Ni 10 000 (6 180 ppm/*C) Measuring range u. 50 (4 280 ppm/*C) Cu 1 00 (4 280 ppm/*C) Cu 50 (4 260 ppm/*C) Cu 100 (4 260 ppm/*C) Type of thermocouple 1/C B 1/C E | | | 510
610
Menu
8-5
8-1
6-5
6-1
Menu
B | Ni 10 000 (6 180 ppm/*C) Measuring range Cu 50 (4 280 ppm/*C) Cu 1 00 (4 280 ppm/*C) Cu 100 (4 280 ppm/*C) Cu 100 (4 280 ppm/*C) Fype of thermocouple T/C B T/C E T/C J T/C K | | | 510
610
Menu
8-5
8-1
6-5
6-1
Menu
B
E
J
K | Ni 10 000 (6 180 ppm/°C) Measuring range Cu 50 (4 280 ppm/°C) Cu 100 (4 280 ppm/°C) Cu 50 (4 260 ppm/°C) Cu 100 (4 250 ppm/°C) Type of thermocouple T/C B T/C J T/C J T/C K | | | 510
610
Menu
8-5
8-1
6-5
6-1
Menu
B
E
J | Ni 10 000 (6 180 ppm/*C) Measuring range Cu 50 (4 280 ppm/*C) Cu 1 00 (4 280 ppm/*C) Cu 100 (4 280 ppm/*C) Cu 100 (4 260 ppm/*C) Type of thermocouple T/C B T/C E T/C J T/C K | - the entire measuring set is working under - when using compensation box Method and procedure of setting the cold junctions is described in separate chapter on page 80 For thermocoule type "B" the items CON. and t.C.J. are not available ## SETTING #### 6.1.2e Setting temperature of cold junction T/C Setting temperature of cold junction - range 0...99°C with compensation box ### 6.1.2f Compensation of 2-wire conduct ## c.Rd. Offset of the beginning of the measuring range in cases when it is necessary to offset the beginning of the range by certain value, e.g. while using sensor in measuring head - entered directly in Ohm (0...999) #### 6.1.2g Compensation of 2-wire conduct ## LER. Compensation of 2-wire conduct - for measurement accuracy it is necessary to perform compensation of conduct always in case of 2-wire connection - prior confirmation of the displayed prompt "YES" it is necessary to substitute the sensor at the end of the conduct by a short-circuit - **DEF** = 0 ## 6.1.3 Setting the real time clock #### 6.1.4a External input function selection ## SETTING #### 6.1.4b Selection of function "HOLD" | ↑
⊚ | ⊖ → | | | -0 | |----------------------|------------|------|-------|-------| | 0 | InP. | ELr. | ЕН. І | d 15. | | ŧ | EHR. | EFG. | €#. 2 | d. R | | | OUŁ. | [t] | Ен. 3 | dRL. | | ŧ | SEr. | Ень. | П. Н. | RLL | | 0 | | FEY. | | | #### Selection of function ΩН "HOLD" "HOLD" locks only the d 15. value displayed "HOLD" locks the value d. R. displayed and on AO "HOLD" locks the value J.R.L displayed, on AO and limit evaluation "HOLD" locks the entire 811 instrument #### 6.1.5a Optional accessory functions of the keys | ! | | | |-----------------|--------------------------------------|--| | Preset values o | f the control keys DIF:
Show Tare | | | UP | Show Max. value | | | DOWN | Show Min. value | | | ENTER | w/o functione | | Setting is identical for LEFT, DOWN, UP and ENTER | | Fn.L. | Assigning further functions to instrument | |------|-------|---| | kevs | | | - "FN. L." > executive functions - "TM. L." > temporary projection of selected values - "MN. L." > direct access into menu on selected item Key has no further function E.N.N. Resetting min/max value Tare resetting Direct access into menu on selected item after confirmation of this selection the "MENU" item is displayed on superior menu level, where required selection is performed Temporary projection of selected values after confirmation of this selection the item "TEMPOR." is displayed on superior menu level, whererequired selection is performed EAr. Tare function activation Temporary projection of #### 6.1.5b Optional accessory functions of the keys - Temporary projection | ↑⊙⊙ | 9 → | | | | ←0 | |------------|------------|------|------|--------|-----------| | 0 | In? | ELr. | LEF | Fn L. | n Ø. | | ŧ | CHR. | EFG. | dΩu. | Eff.L. | E. A | | | OUE. | [| UP | | F. R | | | SEr. | ЕНЕ. | Ent. | | n, Fa | | | | FEY. | | | fi In | | | | | | | пян | | | | | | | L. 1 | | | | | | | L. 2 | | | | | | | L. 3 | | | | | | | L. Y | | | | | | | F IU | | | | | | | dAF | | | | | | | ERr. | | ŧ | | | | | | | Ó | | | | | £ 0. J. | | £11. £. | selected item | | |--|---|--| | - "Temporary" projection of selected value is displayed for the time of keystroke - "Temporary" projection may be switched to permanent by pressing • + "Selected key", this holds until the stroke of any key | | | | n0 | Temporary projection is off | | | £. R | Temporary projection of
"Channel A" value | | | F. A | Temporary projection of
"Channel A" value after
gital filters | | | n. Fn. | Temporary projection of
"Mathematic functions" | | | | Temporary projection of "Min. value" | | | ПЯН | Temporary projection of "Max. value" | | | L. [| Temporary projection of "Limit 1" value | | | L. ≥ | Temporary projection of "Limit 2" value | | | L. 3 | Temporary projection of "Limit 3" value | | | L. Y | Temporary projection of "Limit 4" value | | | E III. | Temporary projection of
"TIME" value | | | dRŁ. | Temporary projection of "DATE" value | | | ERr. | Temporary projection of
"TARE" value | | | P.ER. | Temporary projection of
"P. TARE" value | | | £0. J. | Temporary projection of "CJC" value | | | ! | | | | Setting is identical | l for LEFT, DOWN, UP and ENTER | | ## 6.1.5c Optional accessory functions of the keys - Direct access to item #### Setting "PROFI" - CHANNELS 6.2 The primary instrument parameters are set in this menu C.R Ω E_{Ω} Setting parameters of measuring "Channel" Setting parameters of mathematic functions п. п. Selection of access and evaluation of Min/ max value #### 6.2.1a Display projection PM DU ОНМ Setting display SEŁ projection Setting display projection NIn for minimum value of пян input signal - range of the setting is -99...999 - **DEF** = 0 Setting display projection for maximum value of input signal - range of the setting is -99...999 - DEF = 100 #### PM 6.2.1b Setting fixed tare DU OHM DC #### Setting "Fixed tare" P.ER. value - setting is designed for the event when it is necessary to firmly shift the beginning of the range by known size - when setting (P. TA. > 0) display shows "T" symbol - range of the setting is 0...999 - **DEF** = 0 #### 6.2.1c Digital filters #### Selection of digital noa. filters - at times it is useful for better user projection of data on display to modify it mathematically and properly, wherefore the following filters may be used: Filters are off n0 Measured data RuE. average - arithmetic average from given number ("CON.") of measured values - range 2...100 Selection of floating filter FLO. - floating arithmetic average from given number ("CON.") of measured data and updates with each measured value - range 2...30 Selection of exponential ЕНР. - integration filter of first prvního grade with time constant ("CON.") measurement - range 2...100 Measured value rnd. rounding - is entered by any number, which determines the projection step (e.g: "CON."=2,5 > display 0, 2.5, 5,...) - this menu item is always displayed after selection of particular type of filter - **DEF** = 2 #### 6.2.1d Projection format - positioning of decimal point ## 6.2.1e Selection of storing data into instrument memory | Selection of storing data into instrument memory | | | |--|--|--| | - by selection in this item you allow to register values into instrument memory - another setting in item
"OUT. > MEM." (not in standard experiment) | | | | Measured data are stored in the memory | | | | Measured data are not stored | | | #### 6.2.2a Mathematic functions OFF. are off Polynome POL. $$Ax^5 + Bx^4 + Cx^3 + Dx^2 + Ex + F$$ $$\frac{1}{A} + \frac{B}{A} + \frac{C}{A} + \frac{D}{A} + \frac{E}{A} + F$$ LOG. Logarithm $$A \times \ln \left(\frac{Bx + C}{Dx + E} \right) + F$$ Exponential $$A \times e^{\left(\frac{Bx+C}{Dx+E}\right)} + F$$ $$A \times (Bx + C)^{(Dx+E)} + F$$ $$A \times \sqrt{\frac{Bx + C}{Dx + E}} + B$$ $A \sin^5 x + B \sin^4 x + C \sin^3 x + D \sin^2 x$ $+ E \sin x + F$ E. - Setting constants for calculation of mat. functions - this menu is displayed only after selection of given mathematic function ## SETTING #### 6.2.2b Mathematic functions - decimal point #### 6.2.2c Mathematic functions - selection of storing data into instrument memory | | 58 ₀ . | Selection of storing data into instrument memory | |--|-------------------|--| | - by selection in this item you allow to | | | | register values into instrument memory | | | | - another setting in item "OUT. > MEM." | | | | (not | in standa | ard experiment) | 985 stored in the memory Measured data are not n0 stored Measured data are ## Selection of evaluation of min/max value | InP. | Selection of evaluation of min/max value | | |--|---|--| | selection of value from which the min/
max value will be calculated | | | | ~B | Evaluation of min/max value is off | | | £. A | From "Channel A" | | | F. A | From "Channel A" after digital filters processing | | | fl. Fn. | From "Mathematic functions" | | ## 6.3 Setting "PROFI" - OUTPUTS In this menu it is possible to set parame ters of the instrument output signals Setting data logging into пеп. memory Setting type and LIN parameters of limits Setting type and parameters of data output Setting type and parameters of analog output Setting display projection d 15. and brightness Setting bargraph bRr. projection and brightness #### 5.3.1a Selection of mode of data logging into instrument memory #### 6.3.1b Setting data logging into instrument memory - RTC Str. Start of data logging into instrument memory time format HH.MM.SS SEO. Stop data logging into instrument memory time format HH.MM.SS PEr. Period of data logging into instrument memory - determines the period in which values will be logged in an interval delimited by the time set under items START and STOP - time data hold valid for one day, where the logging is valid for every day without limitation - time format HH.MM.SS - item not displayed if "STORE" is selected in menu (INP. > EXT.) #### Setting data logging into instrument memory - FAST Setting logging data into inst. memory - logging data into inst. memory is governed by the following selection, which determines how many percent of the memory is reserved for data logging prior to initiation of trigger imputse - initiation is on ext. input or control key 10% Reser. of 10 % memory prior init. of data logging Reser. of 50 % memory 50% prior init. of data logging Reser. of 90 % memory 901. prior init. of data logging After initiation of data rOL. logging the memory is cyclically transcribed ## SETTING #### 6.3.2a Selection of input for limits evaluation - selection of value from which the limit will be evaluated Limit evaluation is off Limit evaluation from "Channel A" Selection evaluation F. R Limit evaluation from "Channel A" after digital filters processing Limit evaluation from Selection the type of limit Limit is in mode "Limit. hysteresis, delay" - for this mode the parameters of "LIM. L." are set, at which the limit will shall react, "HYS. L." the hysteresis range around the limit (LIM ±1/2 HYS) and time "TIM. L." "Mathematic functions" Limit evaluation from "Min value" Limit evaluation from "Max.value" ## Selection of type of limit Setting is identical for LIM 2, LIM 3 and LIM 4 6.3.2b determining the delay of relay switch-on F-E Frame limit for this mode the parameters are set for interval "ON. L" the relay switch-on and "OFF. L." the relay switch-off noa. HYS. 805. for this mode the parameters are set for "PER. L." determining the limit value as well as its multiples at which the output is active and "TIM. L." indicating the time during which is the output active Dosing limit (periodic) Setting is identical for LIM 2, LIM 3 and LIM 4 #### 6.3.2c Selection of type of output #### Setting values for limits evaluation 6.3.2d # profi ## 6.3.3a Selection of data output baud rate | Ьв | Selection of data output
baud rate | |------|---------------------------------------| | | | | 0.8 | Rate - 600 Baud | | 1.2 | Rate - 1 200 Baud | | | | | 2.4 | Rate - 2 400 Baud | | | Rate - 4 800 Baud | | 4.8 | Naio 4 000 basa | | | Rate - 9 600 Baud | | 9.8 | | | | Rate - 19 200 Baud | | 19.2 | | | | Rate - 38 400 Baud | | 38.4 | Naio oo noo bada | | | Rate - 57 600 Baud | | 57.8 | 5, 500 bada | | | Rate - 115 200 Baud | | 115 | 200 5000 | | | Rate - 230 400 Baud | | 230 | | ## 6.3.3b Setting instrument address ## 6.3.3c Selection of data output protocol #### 6.3.4a Selection of input for analog output | InP. | Selection evaluation analog output | | |---|--|--| | - selection of value from which the analog output will be evaluated | | | | nΘ | AO evaluation is off | | | £. R | AO evaluation
from "Channel A" | | | F. A digital filters p | AO evaluation
from "Channel A" after
rocessing | | | n, Fn. | AO evaluation from "Math.functions" | | | NIn | AO evaluation from "Min.value" | | | ПЯН | AO evaluation
from "Max.value" | | ## 6.3.4b Selection of the type of analog output | ЕЧР. | Selection of the type of analog output | | |---|--|--| | | | | | , 0 | Type - 020 mA | | | E 4 | Type - 420 mA | | | - with indication of error statement (< 3,0 mA) | | | | , ४ | Type - 420 mA | | | , 5 | Type - 05 mA | | | υ 2 | Type - 02 V | | | υ S | Type - 05 V | | | υ IO | Type - 010 V | | | | | | ## 6.3.4c Setting the analog output range ## R. D. Setting the analog output range analog output is isolated and its value corresponds with displayed data. It is fully programmable, i.e. it allows to assign the AO limit points to two arbitrary points of the entire measuring range Assigning the display value to the beginning of the AO range - range of the setting is -99...999 - **DFF** = 0 Assigning the display value to the end of the AO range - range of the setting is -99...999 - **DIF** = 100 #### 6.3.5a Selection of input for display projection | PEr. | Selection display projection | |---|---| | selection of value which will be shown on
the instrument display | | | £. R | Projection of values from "Channel A" | | F. A digital filters pr | Projection of values
from "Channel A" after
rocessing | | fl. Fn. | Projection of values from "Math.functions" | | n In | Projection of values from "Min.value" | | пян | Projection of values | from "Max.value" Selection of display ## Selection of display brightness | br l. | brightness | | |--|---------------------------|--| | - by selecting display brightness we may
appropriately react to light conditions in
place of instrument location | | | | 0 | Display is off | | | - after keystroke display turns on for 10 s | | | | 25 | Display brightness - 25 % | | | 50 | Display brightness - 50 % | | | 75 | Display brightness - 75 % | | | 100 | Display brightness - 100% | | #### 6.3.6a Bargraph - Selection of projection input ## Selection of bargraph evaluation selection of value from which the analog output will be evaluated Analog evaluation is off E. R From "Channel A" From "Channel A" after digital filter modification From "Mathematic function" from "Minimum va-lue" TRH From "Maximum value" ## 6.3.6b Bargraph - Selection of projection mode ## Selection of bargraph projection mode 68r Column projection - the display shows only a column in one colorě PO I. Point projection - the display shows one point in one color 3 C. 3-colored column projection change of color is determined by set limits (COL. > BAND) upon exceeding the limit the color of the entire display, i.e. there is always only one column of one color lit 3-colored bar projection, cascade - change of color is determined by the said limits (COL. > BAND) upon exceeding a limit color of the given display section is changing, i.e. the display may shine up to three colors at a time #### 6.3.6c Bargraph - Setting the projection range #### Bargraph - Setting color 6.3.6d #### 6.3.6e Bargraph - Color setting ## Selection of bargraph color the item "COL." is displayed only with selected mode ("BAR. > MOD.") "3 C." or "3 B" rEd Red color Green color Orange color - Green (Band 0) - Orange (Band 1) - Red (Band 2) Ţ Setting is identical for BA, 1 and BA, 2 ## 6.3.6f Bargraph - Setting the color changes bands ## b.L.1 Setting color limits for color projection - the item "COL." is displayed only with selected mode ("BAR. > MOD.") "3 C." or "3 B." - items "b. L 1" and "b. L 2" determine the borders of the bargraph color changes b. L. 1 Boundary between bands 0 - 1 b. L. 2 Boundary between bands 1 - 2 - DF = 33 (b. L 1)) - DEF = 66 (b. L 2) Ī Setting is identical for B. L. 2 # 6.3.6g Bargraph - Selection of inverse projection # Selection of inverse projection of "Band 0" - the item "COLORS" is displayed only with selected mode ("BAR. > MOD. ") "3 C." or "3 B." - setting "b. A. 1" is designed
for projection where indication of zero center is required Column in "BA. 0" moves from left to right Column in "BA. 0" moves from right to left ## 6.3.6h Bargraph - Selection of limits projection # Selection of limit projection on the bargraph - limits are always displayed orange, always by one degree lighter or darker Limits are projected Limity are not projected # 6.3.6i Bargraph - Selection of display brightness # 6.4 Setting "PROFI" - SERVIS The instrument service functions are set in this menu Selection of menu type NoU. LIGHT/PROFI Restore instrument rES. manufacture setting and calibration Input range calibration CRL. for "DU" version Language version of LRn. instrument menu Setting new access n. PR. password Instrument identification 18. # 6.4.1 Selection of type of programming menu Change of setting is valid upon next access into menu Selection of menu type -LiGHT/PROFI enables setting the menu complexity according to user needs and skills L IG. Active LIGHT menu - simple programming menu, contains only items necessary for configuration and instrument setting - linear menu > items one after another Pr.D. Active PROFI menu - complete programming menu for expert users - tree menu #### 6.4.2 Restoration of manufacture setting | 11 | Restore | | | | | |---|-------------|---------|--|--|--| | Jobs performed | Calibration | Setting | | | | | cancels USER menu rights | ✓ | ✓ | | | | | deletes table of items order in USER - LIGHT menu | ✓ | ✓ | | | | | adds items from manufcture to LIGHT menu | ✓ | ✓ | | | | | deletes data stored in FLASH | ✓ | ✓ | | | | | cancels or linearization tables | ✓ | ✓ | | | | | clears tare | ✓ | ✓ | | | | | clears conduct resistances | ✓ | ✓ | | | | | restore manufacture calibration | ✓ | × | | | | | restore manufacture setting | × | ✓ | | | | Restoration of manufacture settina - in the event of error setting or calibration, manufacture setting may be restored. Restoration of rai. manufacture calibration of the instrument - prior executing the changes you will be asked to confirm you selection "YES" Restoration of instrument SEŁ manufacture setting Restoration of instrument ESP. manufacture setting - generating the manufacture setting for currently selected type of instrument (items marked DEF) Restoration of instrument USE. user setting - generating the instrument user setting, i.e. setting stored under SER./RES./SAV. Save instrument user SRu. setting - storing the user setting allows the operator to restore it in future if needed After restoration the instrument switches off for couple seconds ## 6.4.3 Calibration - Input range DU # ERL. Input range calibration - when "C. Lo" is displayed, move the potentiometer traveller to the required minimum position and confirm by "Enter", calibration is confirmed by "YES" - when "C. Hi." is displayed, move the potentiometer traveller to required maximum position and confirm by "Enter", calibration is confirmed by "YES" ## 6.4.4 Selection of instrument menu language version EZE. Instrument menu is in Czech EnG. Instrument menu is in English # 6.4.5 Setting new access password # o. PR. Setting new password for access to LIGHT and PROFI menu - this selection enables changing number code that blocks the access into LIGHT and PROFI Menu. - range of the number code is 0...999 - universal password in the event of loss is "177" 6.4.6 Instrument identification Projection of instrument SW version - display shows type identification of the instrument, SW number, SW version and current input setting (Mode) - if the SW version reads a letter on first position, it is a customer SW #### 7.0 Setting items into "USER" menu - . USER menu is designed for users who need to change only several items of the setting without the option to change the primary instrument setting (e.g. repeated change of limit setting) - · there are no items from manufacture permitted in USER menu - on items indicated by inverse triangle - · setting may be performed in LIGHT or PROFI menu, with the USER menu then overtaking the given menu structure - For user operation - Menu items are set by the user (Profi/Light) as per request - · Access is not password protected ## Setting n0 item will not be displayed in USER menu **YES** item will be displayed in USER menu with editing option SHO. item will be solely displayed in USER menu # Setting sequence of items in "USER" menu In compiling USER menu from active LIGHT menu the items (max. 10) may be assigned a sequence, in which they will be projected in the menu # Example: Into USER menu were selected these items (keys ♀+♠) > C. TA., L. 1, L. 2, L. 3, for which we have preset this sequence (keys ♀+♠): C. TA. L. 1 O (sequence not determined) L. 2 L. 3 Upon entering USER menu (key) items will be projected in the following sequence: L. 3 > L. 2 > C.TA. > L. 1 Instrument with input for temperature measurement with thermocouple allows to set two types of measurement of cold junction. Reference thermocouple #### WITH REFERENCE THERMOCOUPLE - a reference thermocouple may be located in the same place as the measuring instrument or in place with stable temperature/compensation box - when measuring with reference thermocouple set £0a in the instrument menu to In2 or EH2 - when using a thermostat (a compensation box or environment with constant temperature) set in the instrument menu EELI its temperature (applies for setting EBA to EHZ) - if the reference thermocouple is located in the same environment as the measuring instrument then set in the instrument menu £0n to In2. Based on this selection the measurement of the ambient temperature is performed by a sensor located in the instrument terminal board. #### WITHOUT REFERENCE THERMOCOUPLE - inaccuracy originating from the creation of dissimilar thermocouples on the transition point terminal/conductor of the thermocouple is not compensated for in the instrument - when measuring without reference thermocouple set EBn in the instrument menu to In.I or EH.I - when measuring temperature without reference thermocouple the error in measured data may be as much as 10°C (applies for setting Ellia to EH.1) # DATA PROTOCOL The instruments communicate via serial line RS232 or RS485. For communication they use the ASCII protocol. Communication runs in the following format: ASCII: 8 bit, no parity, one stop bit DIN MessBus: 7 bit, even parity, one stop bit The transfer rate is adjustable in the instrument menu. The instrument address is set in the instrument menu in the range of 0 ÷ 31. The manufacture setting always presets the ASCII protocol, rate of 9600 Baud, address 00. The type of line used - RS232 / RS485 - is determined by an output board automatically identified by the instrument. The commands are described in specifications you can find at na www.orbit.merret.cz/rs or in the OM Link program. ### **DETAILED DESCRIPTION OF COMMUNICATION VIA SERIAL LINE** | Event | Туре | Pro | tocol | Transmit | ted data | | | | | | | | | | | | |---|---------|---------|-------|--------------------------------------|-------------|-----|-----------|-----------|-----|-----|-----|-----|-------------|-------------|-------------|-------------| | | 232 | А | SCII | # | А | Α | <cr></cr> | | | | | | | | | | | D . h.u.u. (DO) | 33 | Ме | ssBus | No - data is transmitted permanently | | | | | | | | | | | | | | Data solicitation (PC) | 5 | А | SCII | # | А | А | <cr></cr> | | | | | | | | | | | | 48 | Ме | ssBus | <sadr></sadr> | <enq></enq> | | | | | | | | | | | | | Data transmission (instrument) | 232 | А | SCII | > | D | (D) <cr></cr> | | | | 23 | Ме | ssBus | <sadr></sadr> | D | (D) <etx></etx> | <bcc></bcc> | | | 485 | А | SCII | > | D | (D) <cr></cr> | | | | 84 | Ме | ssBus | <sadr></sadr> | D | (D) <etx></etx> | <bcc></bcc> | | Confirmation of data acceptannce
(PC) - OK | | | | <dle></dle> | 1 | | | | | | | | | | | | | Confirmation of data acceptance
(PC) - Bad | 485 | MessBus | | <nak></nak> | | | | | | | | | | | | | | Sending address (PC) prior command | 4 | ,,,, | 33203 | <eadr></eadr> | <enq></enq> | | | | | | | | | | | | | Confirmation of address (instrument) | | | | <sadr></sadr> | <enq></enq> | | | | | | | | | | | | | Command transmission (PC) | 232 | ASCII | | # | Α | Α | И | Р | (D) <cr></cr> | | | | Ме | ssBus | <stx></stx> | \$ | Ν | Р | (D) | (D) | (D) | (D) | (D) | <etx></etx> | <bcc></bcc> | | | | | 485 | ASCII | | # | А | Α | N | Р | (D) <cr></cr> | | | | Ме | ssBus | <sadr></sadr> | \$ | Ν | P | (D) | (D) | (D) | (D) | (D) | <etx></etx> | <bcc></bcc> | | | | Command confirmation (instrument) | | ASCII | ОК | ! | А | Α | <cr></cr> | | | | | | | | | | | | 232 | AS | Bad | ŝ | Α | Α | <cr></cr> | | | | | | | | | | | | | Messbus | | No - data is transmitted permanently | | | | | | | | | | | | | | | | ASCII | OK | - ! | Α | Α | <cr></cr> | | | | | | | | | | | | 485 | | Bad | ŝ | Α | Α | <cr></cr> | | | | | | | | | | | | 4 | MessBus | OK | <dle></dle> | 1 | | | | | | | | | | | | | | | Mes | Bad | <nak></nak> | | | | | | | | | | | | | | Command confirmation (inst.) - OK | 485 | Me | ssBus | | А | Α | <cr></cr> | | | | | | | | | | | Command confirmati (instrument) - Bad |] 4 v | | 33503 | š | Α | Α | <cr></cr> | | | | | | | | | | | Instrument identification | | | | # | А | Α | 1Y | <cr></cr> | | | | | | | | | | HW identification | | | | # | Α | Α | 1Z | <cr></cr> | | | | | | | | | | One-time transmission | | | | # | А | Α | 7X | <cr></cr> | | | | | | | | | | Repeated transmission | | | | # | А | Α | 8X | <cr></cr> | | | | | | | | | ### LEGEND | # | # 35 23 _H | | Command beginning | | | | | | |---------------|---------------------------------|------------------------------------|---|--|--|--|--|--| | A A | 031 | | Two characters of instrument address (sent in ASCII - tens and units, e.g. "01", "99" universal | | | | | | |
<cr></cr> | 13 | OD _H | Carriage return | | | | | | | <sp></sp> | 32 | 20 _H | Space | | | | | | | N, P | | | Number and command - command code | | | | | | | D | | | Data - usually characters "0""9", "-", "."; (D) - dp. and (-) may prolong data | | | | | | | R | 30 _H 3F _H | | Relay and tare status | | | | | | | Į. | 33 21 _H | | Positive confirmation of command (ok) | | | | | | | ŝ | 9 63 3F _H | | Negative confirmation of command (point) | | | | | | | > | 62 | 3E _H | Beginning of transmitted data | | | | | | | <stx></stx> | 2 | 02 _H | Beginning of text | | | | | | | <etx></etx> | 3 | 03 _H | End of text | | | | | | | <sadr></sadr> | addres | a +60 _H | Prompt to send from address | | | | | | | <eadr></eadr> | addres | a +40 _H | Prompt to accept command at address | | | | | | | <enq></enq> | 5 | 05 _H | Terminate address | | | | | | | <dle>1</dle> | 16
49 | 10 _H
31 _H | Confirm correct statement | | | | | | | <nak></nak> | 21 | 15 _H | Confirm error statement | | | | | | | <bcc></bcc> | | | Check sum -XOR | | | | | | ## **RELAY, TARE** | Sign | Relay 1 | Relay 2 | Tare | Change
relay 3/4 | |------|---------|---------|------|---------------------| | Р | 0 | 0 | 0 | 0 | | Q | 1 | 0 | 0 | 0 | | R | 0 | 1 | 0 | 0 | | S | 1 | 1 | 0 | 0 | | T | 0 | 0 | 1 | 0 | | U | 1 | 0 | 1 | 0 | | V | 0 | 1 | 1 | 0 | | W | 1 | 1 | 1 | 0 | | р | 0 | 0 | 0 | 1 | | q | 1 | 0 | 0 | 1 | | r | 0 | 1 | 0 | 1 | | s | 1 | 1 | 0 | 1 | | t | 0 | 0 | 1 | 1 | | U | 1 | 0 | 1 | 1 | | ٧ | 0 | 1 | 1 | 1 | | w | 1 | 1 | 1 | 1 | Relay status is generated by command #AA6X <CR>. The instrument immediately returns the value in the format >HH <CR>, where HH is value in HEX format and range 00_H...FF_H. The lowest bit stands for "Relay 1", the highest for "Relay 8" # ERROR STATEMENTS | ERROR | CAUSE | ELIMINATION | |----------|---|--| | E. d. U. | Number is too small (large negative) to be displayed | change DP setting, channel constant setting | | E. d. O. | Number is too large to be displayed | change DP setting, channel constant setting | | Е. Е. Ц | Number is outside the table range | increase table values, change input setting (channel constant setting) | | E. Ł. O. | Number is outside the table range | increase table values, change input setting (channel constant setting) | | E. I.U. | Input quantity is smaller than permitted input quantity range | change input signal value or input (range) setting | | E. I. O. | Input quantity is larger than permitted input quantity range | change input signal value or input (range) setting | | Е. Ни | A part of the instrument does not work properly | send the instrument for repair | | E. EE | Data in EEPROM corrupted | perform restoration of manufacture setting, upon repeated error statement send instrument for repair | | E. dR | Data in EEPROM outside the range | perform restoration of manufacture setting, upon repeated error statement send instrument for repair | | E. CL. | Memory was empty
(presetting carried out) | upon repeated error statement send instrument for repair, possible failure in calibration | | INPUT | | | 1 | | DU | |-----------------------|----------------------|---------------------------|----------|-----------------------|--| | range is adjustbale | | | DC | Voltage of lin. pot. | 2,5 VDC/6 mA | | runge is unjustibule | ±60 mV | >100 M0hm | Input U | gp | min. potentiometer resistance is 500 Ohm | | | ±150 mV | >100 MOhm | Input U | | | | | ±300 mV | >100 MOhm | Input U | PROJECTION | | | | ±1200 mV | >100 MOhm | Input U | | 24-segment 3-color bargraph | | | ±1200 IIIV | >100 MOIIII | IIIpui u | Display 1: | auxiliary 3-digit display, intensive red or green, 7-segment | | range is adjustbale | | DC - opt | ion "A" | Display2: | LED, letter height 9,1 mm | | runge is unjustibute | ±0,1 A | < 300 mV | Input I | Projection: | 24 LED/-99999 | | | ±0,25 A | < 300 mV | Input I | Decimal point: | adjustable - in menu | | | ±0,5 A | < 300 mV | Input I | Brightness: | adjustbale - in menu | | | ±1 A | < 30 mV | Input I | Dilgiiiioss. | uu OSDUIC - III IIICIIO | | | ±5 A | < 150 mV | Input I | INSTRUMENT ACC | TIDACY | | | ±100 V | 20 MOhm | Input U | | | | | ±250 V | 20 MOhm | Input U | TC: | 100 ppm/°C | | | ±500 V | 20 MOhm | Input U | Accuracy: | ±0,1 % of range + 1 digit | | | ±300 ¥ | ZU MUIIII | IIIpui u | | ±0,15 % of range + 1 digit RTD, T/C | | range is adjustbale | | | PM | | ±0,3 % of range + 1 digit PWR | | rango is aujosibaio | 0/420 mA | < 400 mV | Input I | | Above accuracies apply for projection 9999 | | | ±2 V | 1 MOhm | Input U | Resolution: | 0,01°/0,1°/1° RTD | | | ±5 V | 1 MOhm | Input U | Rate: | 0,140 measurements/s** | | | ±10 V | 1 MOhm | Input U | Overload capacity: | 10x (t < 100 ms) not for 400 V and 5 A, | | | ±40 V | 1 MOhm | Input U | | 2x (long-term) | | | | | . | Linearisation: | by linear interpolation in 50 points | | range is adjustbale | | | ОНМ | | - solely via OM Link | | | 0100 Ohm | | | Digital filters: | Averaging, Floating average, Exponential filter, Rounding | | | 01 k0hm | | | Comp. of conduct: | max. 40 Ohm/100 Ohm RTD | | | 010 k0hm | | | Comp. of cold junct.: | | | | 0100 k0hm | | | Functions: | Tare - display resetting | | | Autorange | | | | Hold - stop measuring (at contact) | | Connection: | 2, 3 or 4 wire | | | | Lock - control key locking | | | | | RTD | | MM - min/max value | | Pt xxxx | מחטס מבחסר | | KID | | Mathematic functions | | | -200°850°C | | | OM Link: | company communication interface for setting, operation | | Pt xxxx/3910 ppm | -200°1 100°C | | | OIII EIIIIK. | and update of instrument SW | | Ni xxxx | -50°250°C | | | Watch-dog: | reset after 400 ms | | Cu/4260 ppm | -50°200°C | | | Calibration: | at 25°C and 40 % of r.h. | | Cu/4280 ppm | -200°200°C | 00.01 11.0.000 /0.0 | . | Cumpianoni | al 25 cana 1070 of this | | Type Pt: | | 00 Ohm, with 3 850 ppm/°C | | COMPARATOR | | | | US > 100 Ohm, with | | | | Attack additional later assess | | T Mt. | RU > 50/100 Ohm, | | | Type: | digital, adjustable in menu | | Type Ni: | |) with 5 000/6 180 ppm/°C | | Mode: | Hysteresis, From, Dosing | | Type Cu: | | 4 260/4 280 ppm/°C | | Limita: | -99999999999 | | Connection: | 2, 3 or 4 wire | | | Hysteresis: | 0999999 | | ranae is adiustbale i | n configuration menu | | T/C | Delay: | 099,9 s | | Type: | J (Fe-CuNi) | -200°900°C | ., - | Outputs: | 2x relays with switch-on contact (Form A) | | 71 *** | K (NiCr-Ni) | -200°1 300°C | | | (230 VAC/30 VDC, 3 A)* | | | T (Cu-CuNi) | -200°400°C | | | 2x relays with switch-off contact (Form C) | | | E (NiCr-CuNi) | -200°690°C | | | (230 VAC/50 VDC, 3 A)* | | | B (PtRh30-PtRh6) | 300°1 820°C | | | 2x SSR (250 VAC/ 1 A)* | | | S (PtRh10-Pt) | -50°1 760°C | | | 2x/4x open collector (30 VDC/100 mA) | | | R (Pt13Rh-Pt) | -50°1 740°C | | | 2x bistabil relays (250 VAC/250 VDC, 3 A/0,3 A)* | | | N (Omegalloy) | -200°1 300°C | | Relay: | 1/8 HP 277 VAC, 1/10 HP 125 V, Pilot Duty D300 | | | (Sinoguno)) | 2001 000 € | 1 | | * values apply for resistance lead | ### **DATA OUTPUTS** Protocols: ASCII, DIN MessBus, MODBUS, PROBUS Data format: 8 bit + no parity + 1 stop bit (ASCII) 7 bit + even parity + 1 stop bit (MessBus) Rate: 600...230 400 Baud RS 232: isolated, two-way communication RS 485: isolated, two-way communication, addressing (max. 31 instruments) PROFIBUS Data protocol SIEMENS #### **ANALOGO OUTPUTS** Type: isolated, programmable with resolution of max.10 000 points, analog output corresponds with displayed data, type and range are adjustable Non-linearity: 0,2 % of range TC: 100 ppm/°C Rate: response to change of value < 150 ms Voltage: 0...2 V/5 V/10 V Curernt: 0...5/20 mA/4...20 mA - compensation of conduct to 500 Ohm/12 V or 1 000 0hm/24 V #### MEASURED DATA RECORD Type RTC: time-controlled logging of measured data into instrument memory, allows to log up to 250 000 values Type FAST: fast data logging into instrument memory, allows to log up to 8 000 values at a rate of 40 records/s Transmission: via data output RS 232/485 or via OM Link ### **EXCITATION** Adjustbale: 5...24 VDC/max. 1.2 W. isolated #### **POWER SUPPLY** Options: 10...30 V AC/DC, 10 VA, isolated, - fuse inside (T 4000 mA) 80...250 V AC/DC, 10 VA, isolated - fuse inside (T 630 mA) #### MECHANIC PROPERTIES Material: Norvl GFN2 SE1, incombustible UL 94 V-I Dimensions: 96 x 48 x 120 mm Panel cut-out: 90,5 x 45 mm #### OPERATING CONDITIONS Connection: connector terminal board, conductor cross-section <1,5 mm 2 /<2,5 mm 2 Stabilisation period: within 15 minutes after switch-on Working temp.: 0°...60°C Storage temp.: -10°...85°C Cover: IP65 (front panel only) Construction: safety class I Overvoltage category: EN 61010-1, A2 Insulation resistance: for pollution degree II, measurement category III instrum.power supply > 670 V (PI), 300 V (DI) Input/output > 300 V (PI), 150 (DI) EMC: EN 61000-3-2+A12; EN 61000-4-2, 3, 4, 5, 8, 11; EN 550222, A1, A2 ^{**}Table of rate of measurement in relation to number of inputs | Channels/Rate | 40 | 20 | 10 | 5 | 2 | 1 | 0,5 | 0,2 | 0,1 | |--|-------|-------|-------|------|------|------|------|------|------| | No.of channels: 1
(Type: DC, PM, DU) | 40,00 | 20,00 | 10,00 | 5,00 | 2,00 | 1,00 | 0,50 | 0,20 | 0,10 | | No.of channels: 2 | 5,00 | 2,50 | 1,25 | 1,00 | 0,62 | 0,38 | 0,22 | 0,09 | 0,05 | | No.of channels: 3 | 3,33 | 1,66 | 0,83 | 0,66 | 0,42 | 0,26 | 0,14 | 0,06 | 0,03 | | No.of channels: 4 | 2,50 | 1,25 | 0,62 | 0,50 | 0,31 | 0,19 | 0,11 | 0,05 | 0,02 | | No.of channels: 1
(Type: OHM, RTD, T/C) | 5,00 | 2,50 | 1,25 | 1,00 | 0,62 | 0,38 | 0,22 | 0,09 | 0,05 | | No.of channels: 2 | 3,33 | 1,066 | 0,83 | 0,66 | 0,42 | 0,26 | 0,14 | 0,06 | 0,03 | | No.of channels: 3 | 2,50 | 1,25 | 0,62 | 0,50 | 0,31 | 0,19 | 0,11 |
0,05 | 0,02 | | No.of channels: 4 | 2,00 | 1,00 | 0,50 | 0,40 | 0,25 | 0,15 | 0,08 | 0,04 | 0,02 | ## Instrument installation - 1. insert the instrument into the panel cut-out - 2. fit both travellers on the box ## Instrument disassembly - 1. slide a screw driver under the traveller wing - 2. turn the screw driver and remove the traveller - 3. take the instrument out of the panel | Product | | OMB 412UNI | Α | В | | | |--------------------------------------|------------------------------------|---|-----------|------------------|-------------------------|---------------------------| | уре | | | | | | | | Manufacturing N | No. | | | | | | | Date of sale | | | | | | | | | | | | | | | | | | ths from the date of
riod due to manufac | | | | iminated free of charge. | | or quality, funct
and used in com | ion and constru
pliance with th | e instructions for use | ent the g | guarantee shall | apply provided that the | e instrument was connecte | | he guarantee s | hall not apply t | o defects caused by | /: | | | | | | mechanic dam | age | | | | | | | transportation | unqualified person | incl the | liser | | | | | unavoidable e | | | , 000. | | | | - | other unprofes | sional interventions | | | | | | | | | | | | | | he manufacture | r performs gud | rantee and post.gu | arantee | repairs unless p | provided for otherwise. | ((| | | | | | | | 31 | tamp, signature | # DECLARATION OF CONFORMITY Company: ORBIT MERRET, spol. s r.o. Klánova 81/141, 142 00 Prague 4, Czech Republic, IDNo: 00551309 Manufactured: ORBIT MERRET, spol. s r.o. Vodňanská 675/30, 198 00 Prague 9, Czech Republic declares at its full responsibility that the product presented hereunder meets all technical requirements, is safe for use when utilised under the terms and conditions determined by ORBIT MERRET, spol.s.r.o. and that our company has taken all measures to ensure conformity of all products of the type listed hereunder, which are being brought out to the market, with technical documentation and requirements of the appurtenant statutory orders. **Product:** 4-digit programmable panel instrument Type: OMB 412 Version: UNI, PWR Conformity is assessed pursuant to the following standards: El. safety: EN 61010-1 EMC: EN 50131-1, chapter 14 and chapter 15 EN 50130-4, chapter 7 EN 50130-4, chapter 8 EN 50130-4, chapter 9 EN 50130-4, chapter 10 EN 50130-4, chapter 11 EN 50130-4, chapter 12 EN 50130-4, chapter 12 EN 50130-4. chapter 13 EN 61000-4-5 EN 61000-4-5 EN 61000-4-5 EN 50130-5, chapter 20 prEN 50131-2-1, par. 9.3.1 EN 61000-4-8 EN 61000-3-2 ed. 2:2001 EN 61000-3-3: 1997, Cor. 1:1998, Z1:2002 EN 55022, chapter 5 and chapter 6 and Ordinance on: El. safety: No. 168/1997 Coll. EMC: No. 169/1997 Coll. The evidence are the protocols of authorized and accredited organizations: VTÚE Praha, experimental laboratory No. 1158, accredited by ČIA VTÚPV Vyškov, experimental laboratory No. 1103, accredited by ČIA Place and date of issue: Prague, 18. March 2006 Miroslav Hackl v.r. Company representative Mode of asses. of conformity §12, par. 4 b, d Act No. 22/1997 Coll.